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1 CHATPER -1:  FUEL CELLS 

1.1 Introduction 

A fuel cell is an electrochemical device that generates electrical energy from fuel via an 

electrochemical reaction. The process is reverse of water electrolysis in which electric current 

breaks down water into hydrogen and oxygen ions. In fuel cells, hydrogen (fuel) and oxidizer 

(oxygen or air) react chemically to generate electricity, heat, and water.  

Fuel + oxidant → electricity + heat + water  

In many ways, the fuel cell is analogous to a battery. The key difference between batteries and fuel 

cells is that while batteries store energy, fuel cells produce electricity continuously if fuels are 

supplied. 

The first commercial usage of fuel cells was in the 1960s when NASA utilized them to power 

satellites and space shuttles. Fuel cells have since been used in many applications ranging from 

portable gadgets, automobiles, and stationary power generation. 

1.2 Components of a Fuel Cell 

The working of fuel cells is simple. It contains three main components: 

a. Anode 

b. Cathode 

c. Electrolyte 

1.2.1 Anode 

The anode is the negative post of the fuel cell. It is the electrode where oxidation takes place. It 

conducts the electrons that are freed from the hydrogen molecules so that they can be used in an 

external circuit. It has channels attached to it that disperse the hydrogen equally over the surface 

of the catalyst. 
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1.2.2 Cathode 

The cathode is the positive post of the fuel cell. It has channels etched into it that distribute the 

oxygen to the surface of the catalyst. It also conducts the electrons back from the external circuit 

to the catalyst, where they can recombine with the hydrogen ions and oxygen to form water. 

Both anode and cathode are made from a thin carbon fiber paper which allows the active gases to 

pass through and the electrode surfaces support platinum catalysts. Carbon fiber paper is 

commonly used because it is porous, hydrophobic (non-wettable), conductive, and non-corrosive. 

The material is very thin to maximize gas and water transport.  

1.2.3 Catalyst 

Catalyst is a chemical substance that increases the rate of reaction. The catalyst is a special material 

that facilitates the reaction of oxygen and hydrogen. It is usually made of platinum powder very 

thinly coated onto carbon paper or cloth. The catalyst is rough and porous so that the maximum 

surface area of the platinum can be exposed to hydrogen or oxygen. 

Platinum is very expensive, so the amount used (known as the catalyst loading) is a significant 

factor in the cost of a fuel cell. Fuel cell designers strive to minimize the amount of platinum used 

while maintaining good cell performance.   

1.2.4 Electrolyte  

The electrolyte is a substance that conducts charged ions from one electrode to the other in a fuel 

cell. This is a specially treated material that only conducts positively charged ions. 

1.3 Working of Fuel Cell 

Fuel cells work much like batteries. A chemical reaction takes place between the electrodes (anode 

and cathode) and the movement of charged hydrogen ions across an electrolyte membrane 

generates a current. 

The schematic diagram of the fuel cell is provided below. 
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Figure 1.Galvanic Cell Operation 

The electrodes are coated with a platinum or palladium catalyst and separated from each other by 

an electrolyte. Without the catalyst, hydrogen and oxygen would not react to produce heat and 

electricity. The electrolyte consists of an ion-conducting membrane, and this membrane needs to 

be permeable for protons and impermeable to electrons. 

1.4 Need for Fuel Cells 

The primary reason for the adoption of fuel cells is the increasing reliance and dependency on the 

use of fossil fuels, which has led to global warming and extreme weather patterns. Aside from the 

pollution and environmental issues, the use of fossil fuels such as oil has grown to the point where 

the sources of production have become scarce. As a result, more challenging expeditions for oil 

reserves will be required, which may result in a very high oil price. 

Fuel cells are undoubtedly an option to the above-mentioned concerns. They are a clear answer to 

end fossil fuel dependence. The finest characteristic of fuel cells is that pure water is produced as 

a by-product. As a result, they are free of pollution. The technology will undoubtedly solve the 

rising oil issues. 
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1.4.1 Fuels & Oxidant 

Hydrogen is the best fuel for fuel cells since it is more electrochemically reactive than other fuels 

like hydrocarbons (natural gas or LPG) or alcohols. 

Fuel cells can also run-on various hydrocarbon gases. After cleaning (removing sulfur and other 

contaminants), the fuel must be converted into a hydrogen-rich ‘reformate' before being fed into 

the fuel cell stack. 

a. High-temperature fuel cells typically run-on hydrocarbon fuels, notably hydrogen-rich 

gases like methane. 

b. Low-temperature systems can run on methanol. 

The most used oxidants are oxygen, chlorine, and chlorine dioxide. 

1.4.1.1 Facts about Hydrogen 

a. Hydrogen is the perfect environmentally friendly fuel for fuel cells for stationary power 

generation. It can also be used as the fuel in internal combustion engines to replace petrol 

or diesel. 

b. Hydrogen is, atomically speaking, number one. It comes first in the periodic table, it’s the 

lightest of elements and it’s the most abundant element in the universe. It is invisible, 

odorless, and non-toxic.  

c. Hydrogen can be extracted from the reformation of hydrocarbon fuels or the electrolysis 

of water. If hydrocarbon fuels are used for producing hydrogen using a reformer, the 

process does generate greenhouse gases. If electrolysis is used for producing hydrogen, the 

process is clean and sustainable with no greenhouse gas emissions. But the electrolysis 

process consumes a large amount of electricity. Indirectly it also contributes to the 

greenhouse gasses depending on the sources used to produce electricity. However, if the 

electricity comes from a renewable energy source such as wind or solar power, the net 

environmental impact is zero. Most hydrogen gas produced in the world today comes from 

a reformation process. 

1.5 Advantages of Fuel Cells  

Fuel cells have many advantages over conventional electricity generation systems.  
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1.5.1 Higher Efficiency  

Fuel cells are driven by electrochemistry, not combustion, and therefore are more efficient than 

conventional power plants (direct energy harvesting). For example, a conventional combustion-

based power plant generates electricity at 33-35% efficiency, whereas fuel cells produce energy at 

up to 60% efficiency. In transportation, hydrogen fuel cells can reduce fuel consumption by 50%. 

 

Figure 2.Conventional methods of generating power 

 

 

Figure 3.Fuel-cell-package methods of generating power 

To push the efficiency even higher, a fuel cell can be coupled with a combined heat and power 

(CHP) system, which utilizes the cell’s waste heat. The overall energy efficiency can be as high as 

80 percent. The distributed power generation straight at the point of use can further reduce the 

energy losses associated with long-range grid transmission.   

1.5.2 Environment Friendly 

Fossil-fueled power plants and vehicles emit the most CO2 and other greenhouse gases. Fuel cells 

are driven by electrochemistry, not combustion. As a result, hydrogen fuel cells do not emit 
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greenhouse gases. They are a naturally pure source of energy, generating just heat and water as 

waste products. 

The table below compares the emissions profile of a fuel cell versus other forms of distributed and 

central power generation. 

Generation 

Technology  

NOx (lbs/MWh)  SO2 (lbs/MWh)  Particulate 

Matter 

(lbs/MWh)  

CO2 

(Tons/MWh)  

Fuel Cells* 0.01  0.001  None  0.49  

Diesel 

Generators  

5.9-17.1  0.3-0.5  0.74-3.0  0.75-0.9  

Combined Cycle 

Natural Gas  

0.11  0.022  0.067  0.50  

Pulverized Coal  0.69  1.41  0.28  0.97 * 

Table 1.Emissions profile of a fuel cell versus other forms of distributed and central power generation 

*Assumes internal conversion of natural gas to hydrogen within the fuel cell. For pure hydrogen 

as a fuel there are no emissions. 

Source: National Fuel Cell Research Center 

If a fuel cell uses natural gas or another hydrogen-rich fuel, a reformer is used to obtain hydrogen. 

A small amount of NOx, Sox, and CO2 is released per kWh of power generated – significantly less 

than typical fossil fuel generation. When pure hydrogen is used as the fuel, the only by-products 

are water and heat. There is no particulate, CO2, and NOx production with its use. This makes fuel 

cells potentially carbon neutral and highly efficient. 

1.5.3 More Powerful and Energy Efficient than Fossil Fuels 

Hydrogen fuel cell technology provides a high-density source of energy with good energy 

efficiency. Hydrogen has the highest energy content of any common fuel by weight. High pressure 

gaseous and liquid hydrogen have around three times the gravimetric energy density (around 120 

MJ/kg or 51,590 Btu/lb.) of diesel and LNG and a similar volumetric energy density to natural gas.   
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1.5.4 Quiet and Vibration Free 

Hydrogen fuel cells do not produce noise pollution due to no internal moving parts. Noise levels 

from a fuel cell system with a reformer are roughly 60 dB at one-meter distance.  

This also means that much like electric cars, hydrogen-powered vehicles are much quieter than 

those that use conventional internal combustion engines. 

1.5.5 Scalable 

Fuel cells are scalable. The current produced by a fuel cell is proportional to the electrode area, 

hence stacking fuel cells increases the potential output. 

To produce higher voltages, fuel cells are connected in series. The number of cells in a stack 

depends on the desired power output and individual cell performance. Because generator systems 

are so modular, it's easy to find and replace a broken or defective fuel cell. This function saves on 

maintenance. 

1.5.6 Reduced Space 

Stationary fuel cell devices also take up significantly less area in proportion to other renewable 

energy sources. For instance, a 10 MW fuel cell system can be sited in around an acre of land. This 

is compared to around 10 acres required per MW of solar power and about 50 acres per MW of 

wind power. 

1.5.7 High Responsivity 

A fuel cell can be started and run at maximum power in 30 minutes. Load variation has no effect 

on efficiency as long as it is over 30%. 

1.5.8 System Availability 

Fuel cell systems are perceived as low-maintenance devices. Fuel cells in North America have 

been recorded achieving more than 90 percent availability. In premium power applications, 100 

percent customer power availability, and 95 percent+ fleet availability has been reported during 

the same period. They are particularly useful in high load factor (baseload) situations. 
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1.5.9 Long Life 

Fuel cells have a projected life of 40,000 hours of operation at full load. 

1.5.10 Fuel Flexibility 

The ideal fuel for fuel cell operation is hydrogen, although many alternative hydrogen-rich fuels 

can be reformed to produce hydrogen. Some fuel cells even can be fueled directly with methanol, 

without using a reformer.  

1.6 Disadvantages of Fuel Cells 

1.6.1 High Costs 

Precious metals such as platinum and iridium are typically required as catalysts in fuel cells, which 

means the high capital cost of fuel cells. Secondly, the fuel used is hydrogen. The costs of 

production, compressing, transporting, and storing the hydrogen fuel raise the operating costs 

significantly. 

1.6.2 Bad Infrastructure 

Despite being the most abundant element in the universe, hydrogen does not exist naturally in the 

environment and must be extracted from other substances that contain hydrogen such as methanol, 

gasoline, natural gas, or water. 

The current infrastructure does not support hydrogen production, transportation, storage, and 

distribution. A flowchart below depicts the hydrogen production, distribution, and application. 
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Figure 4. Hydrogen Generation, Storage, Distribution & Applications 

Source: Cummins 

 

1.6.3 Life Cycle and Reliability 

Fuel cells need clean, pure fuel devoid of impurities. These impurities include sulfur and carbon 

compounds, as well as residual liquid fuels that can deactivate the fuel cell catalyst effectively 

destroying its ability to operate.  

Fuel cells generate pure water during the power generating reaction. Left to freeze, any remaining 

water in the fuel cells will permanently destroy the cells. In normal conditions, fuel cell systems 

generate enough heat to prevent freezing, but in cold weather, the fuel cells must be kept warm, or 

the residual water must be removed before freezing.  

Fuel cells that use proton exchange membranes must not dry out during use. These must remain 

moist during storage. Attempts to start or operate these fuel cells under dry conditions can destroy 

the membrane. 
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1.6.4 Complex Controls 

Fuel cells require complex support and control systems. Fuel cells themselves are solid- state 

devices, but the systems required to support fuel cell operation are not. 

1.6.5 Hydrogen Safety 

Hydrogen is extremely flammable. It burns in air at concentrations ranging from 4 to 75% and can 

form explosive mixtures when mixed with air (oxygen). Some issues for plant safety, maintenance, 

and operation include: 

a. Explosion due to ignition of escaped biogas (CH4, H2S, CO, CO2). 

b. Explosion due to ignition of escaped H2 gas 

c. Burns due to contact with high-temperature surfaces or fluids, or frostbite due to contact 

with expelled gas expanding from high pressure. 

d. Equipment failures 

e. Asphyxiation if biogas, hydrogen, or nitrogen gas (used for purging of the plant) build up 

in a confined space with human occupancy. 

The hydrogen gas utilized in fuel cell plants should be contained. Every piece of equipment must 

be earthed. Never lubricate a pressured system using oils. 

Hydrogen diffuses quickly and may leak from a gas-tight system. Stored hydrogen must be 

maintained away from ignition sources and separated from other compressed gases. 

The area where the fuel cell facility is operated must be continuously monitored for leakage of 

hydrogen gas. Continuous gas monitoring is recommended with alarm and emergency shutdown 

features. Such emergency shutdown mechanisms should be hardwired and recognized as safety-

critical devices. 

NOTE: Hydrogen gas burns with an invisible flame. In the event of fire, allow the gas to burn until 

the supply has been isolated and then use an extinguisher appropriate to nearby fires. Gas cylinders 

should be cooled using a water spray NOT a concentrated jet of water. 



Introduction to Fuel Cells – R07-001 

 

   

  14 

 
 
 

The containers appropriate for keeping hydrogen should go through thorough tests to make sure 

they are safe for the public. Extensive safety procedures and hazard reviews are needed to make 

the system fail-proof. 

For further reading on hydrogen safety, we recommend the following resources: The Hydrogen 

and Fuel Cell Safety Report maintained by the Fuel Cell and Hydrogen Energy Association ( 

www.hydrogenandfuelcellsafety.info/ ) and Hydrogen Tools Portal maintained by the Pacific 

Northwest National Laboratory (PNNL) ( https://h2tools.org/ ) 

1.7 Comparison of Fuel Cells with Batteries  

Hydrogen fuel cells and batteries are both electrochemical cells. They each have two electrodes in 

contact with a material that can conduct ions, called an electrolyte. One electrode is the anode and 

the other is the cathode. While both batteries and fuel cells convert chemical energy into electrical 

energy, batteries store this chemical energy inside the battery itself. This means that a battery will 

run down, or need recharging when there is no longer enough stored chemical energy available to 

produce sufficient electricity to power the device connected to the battery. Rather than storing 

chemical energy inside itself, a hydrogen fuel cell gets a supply of chemical energy from the 

outside. This chemical energy is stored in the hydrogen that is supplied to the anode of the fuel 

cell. A hydrogen fuel cell essentially consumes hydrogen and oxygen. When a fuel cell is 

continuously supplied with hydrogen and oxygen, and the product water is removed, the fuel cell 

can generate electricity. 

Further, the anode and cathode of a battery are consumed during use because the battery electrodes 

actively participate in the conversion of chemical energy to electrical energy, and over time this 

can have a damaging effect on the electrodes and therefore on the effectiveness of the battery. 

Unlike batteries, the electrodes in hydrogen fuel cells are relatively stable since they act as catalysts 

in the release or acceptance of electrons and are not chemically changed during this process. 

1.8 Comparison of Fuel Cells with Heat Engines  

Fuel cells and heat engines (e.g., internal combustion engines or gas turbines) share similarities in 

a way that both use gaseous fuel, drawn from an external fuel storage system. Both systems use 

http://www.hydrogenandfuelcellsafety.info/
https://h2tools.org/
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hydrogen-rich fuel. Fuel cells use pure hydrogen or a reformated gas mixture. Heat engines 

typically use carbon and hydrogen containing fossil fuels.  

In some respects, fuel cells and heat engines are fundamentally different.  

Fuel Cells   

Chemical Energy ⇒ Electrical Energy 

Turbine Generators   

Chemical Energy ⇒ Heat ⇒ Mechanical Energy ⇒ Electrical Energy 

Heat engines are mechanical devices that generate mechanical energy while fuel cells, like 

batteries, are solid-state devices that react chemically to generate electrical energy. 

Heat engines convert chemical energy into heat by way of combustion and use that heat to do 

useful work. Fuel cells convert a fuel's chemical energy directly into electricity without raising the 

temperature of the working fluid such as air in the combustion process. Because the energy 

conversion in fuel cells is accomplished in a single direct conversion process, much higher 

efficiencies are possible than with conventional electricity generation by means of turbine 

generators which involve three energy conversion processes. The energy released in a fuel cell by 

a chemical reaction is determined by the change in Gibbs free energy.   

The efficiency characteristics of fuel cells compared with other electric power generating heat 

engine systems is shown in the figure below.  
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Figure 5. Efficiency Characteristics 

1.9 Key Features of Fuel Cells 

The features that make fuel cell systems a leading prime mover for energy applications are:  

1.9.1 Fuels 

The following fuels can be used: 

a. Natural Gas – methane from the pipeline. 

b. Liquefied petroleum gas (LPG) – propane and butane mixtures. 

c. Sour gas - unprocessed natural gas as it comes directly from the gas well. 

d. Biogas – any of the combustible gases produced from biological degradation of organic 

wastes, such as landfill gas, sewage digester gas, and animal waste digester gas. 

e. Industrial waste gases – flare gases and process off-gases from refineries, chemical plants, 

and steel mill. 

f. Manufactured gases – typically low- and medium-Btu gas produced as products of 

gasification or pyrolysis processes. 
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1.9.2 Flexibility 

This flexibility is mostly dependent on the operating temperature of the fuel cell. In principle, the 

higher the temperature the less pure fuel/gas can be used. 

1.9.3 Electrical Output 

The fuel cell typically generates about 0.6 Volts to 0.7 Volts DC per cell at full load. 

To provide greater voltage and power, a greater number of cells is placed in series creating a 

structure called cell stack. Increasing the active area of individual cells manages current flow. 

Depending on the fuel cell and the application power requirements, cell area can range from 100 

cm2 to over 1 m2. 

1.9.4 Current and Power 

The current output from a single cell is directly proportional to the area of the electrodes. 

As with batteries, the effective area of the electrodes and hence their potential current carrying 

capacity can be increased without increasing their physical size by making the surface porous and 

using materials with very fine particle size. 

Typical power outputs are about 1 Watt /cm2 of electrode plates. 

1.9.5 Dynamic Response 

Low-temperature fuel cells operate at around 80°C, which allows reasonably fast warm-up times 

(10 to 20 seconds) compared with high-temperature fuel cells which take as much as 30 minutes 

to reach their operating temperature of 700 to 1000°C.  

Low-temperature fuel cells find applications for automotive applications which require quick start-

ups. High-temperature fuel cells find application for stationary power generation. 

1.9.6 High-Quality Power 

Electrical output is computer-grade power, meeting critical power requirements without 

interruption. This minimizes lost productivity, lost revenues, product loss, or opportunity cost. 
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1.9.7 Efficiency 

Efficiencies of present fuel cell plants are in the range of 30 to 55 percent based on the lower 

heating value (LHV) of the fuel. The waste heat from the fuel cell can be used in combined heat 

and power (CHP) applications that can offer efficiencies greater than 70 percent. 

Another key feature of the fuel cell is that their performance and cost are less dependent on the 

scale than other power technologies. Small fuel cell plants operate nearly as efficiently as large 

ones, with equally low emissions, and comparable cost. 

1.9.8 Size Range  

Fuel cell systems are constructed from individual cells that generate 100 W to 2 kW per cell. This 

allows systems to have extreme flexibility in capacity. Multiple systems can operate in parallel at 

a single site to provide incremental capacity. 

1.9.9 Availability  

Commercially available systems have demonstrated greater than 90% availability. 

1.9.10 Part-load Operation  

Fuel cell stack efficiency improves at lower loads, which results in a system electric efficiency that 

is relatively steady down to one-third to one-quarter of rated capacity. 

1.9.11 Reliability and Life  

While the systems have few moving parts, stack assemblies are complex and have had problems 

with seals and electrical shorting. Stack rebuilds are required every 5-10 years. 

We will learn more about the technology and applications in this course. 
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2 CHAPTER -2:  APPLICATIONS OF FUEL CELLS  

Fuel cells are inherently modular and therefore lend themselves to a wide range of applications, 

from large stationary powerplants to small portable power packs for backup supplies or remote 

areas, which are off-grid. These are also widely used for automotive applications – both hybrid 

and electric vehicles. 

Fuel cells have three main applications:  

a. Transportation 

b. Portable uses  

c. Stationary power installations 

2.1 Transportation 

Fuel cells can power our vehicles including personal vehicles, trucks, buses, and marine vessels, 

as well as provide auxiliary power to traditional transportation technologies. Hydrogen can play a 

particularly important role in the future by replacing the imported petroleum we currently use in 

our cars and trucks. 

In a vehicle that operates from an internal combustion engine the energy flow is as follows: 

• Chemical Energy → Thermal Energy → Mechanical Energy (+ Fuel emissions) 

In a vehicle that operates from a fuel cell the energy flow is: 

• Chemical Energy → Electrical Energy → Mechanical Energy (+ Water) 

Fuel cells driven vehicles have several properties that make them suitable for many transport 

applications.  

a. FCVs are zero-emission vehicles – they produce no tailpipe pollution except water vapor  

b. Fuel cell vehicles (FCV) are up to three times more energy-efficient than conventional 

vehicles  

c. A hydrogen vehicle has the same range as those that use fossil fuels (around 300 miles). 

This is superior to that currently offered by electric vehicles (EVs), which are increasingly 

being developed with fuel cell power units as ‘range-extenders’. Hydrogen fuel cells are 
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also not significantly impacted by the outside temperature and do not deteriorate in cold 

weather, unlike EVs. This advantage is increased further when coupled with the short 

charging times. 

d. The refueling time is three-five minutes maximum  

e. FCVs have no internal moving parts, are quiet and greatly reduce greenhouse gas carbon 

emissions. 

 

 

Figure 6. Fuel Cell Vehicle 

Caution: Transport applications tend to demand rapid start-up and instant dynamic response from 

fuel cell systems, so a high-temperature fuel cell is unlikely to be competitive in this instance and 

operates at low temperatures typically less than 100ºC.  

Many major car companies are engaged in automotive fuel cell programs including Daimler-

Chrysler, Ford, General Motors, Nissan, Mazda, Subaru, Toyota, Honda, and Hyundai.  

Figure below shows a few fuel cell vehicles. 
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Figure 7.Fuel cell vehicles 

Fuel cells are not just confined to the utility vehicles – aerospace, locomotives, ships, submarines, 

unmanned aerial vehicles and a whole host of other applications offer the potential for a variety of 

fuel cell systems. For ships and trains, which is almost akin to having a stationary power plant 

running constantly, the fuel cell application ensures minimum noise, emissions, and vibration.  

Of the technologies being studied for use in automobiles, the PEMFC technology offers the most 

promising results.  

2.2 Stationary Power 

Stationary fuel cells are designed to provide a clean, reliable source of power in varied 

applications, such as hospitals, hotels, airports, military bases, large office buildings, 

manufacturing sites, wastewater treatment plants, and institutions to meet the following 

requirements:  

a. On-site energy 

b. Continuous power – backup 

c. Uninterrupted power supply 

d. Premium power quality 
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e. Independent power source 

One characteristic of fuel cell systems is that their efficiency is nearly unaffected by size. This 

means that smaller plants (several hundred kW to 1 to 2 MW) can be developed at the user’s 

facility and the larger, dispersed plants (1 to 10 MW) can be used for distributed generation and 

cogeneration system in which excess heat released during electricity generation is used for other 

applications.  

The plants are fueled primarily with natural gas and use high-temperature fuel cells.  

 

 

Figure 8.Fuel Cells for Power Generation & Storage 

The United States, Germany, and Japan have the greatest number of stationary fuel cell power 

stations. Many companies around the country are adopting fuel cells for primary and backup power 

including Adobe, Apple, AT&T, CBS, Coca-Cola, Cox Communications, Delmarva Power, 

Honda, Microsoft, Target, and Walmart, among others. Google and eBay, Mountain View, CA are 

among the companies that have been beta-testing the solid oxide fuel cells recently introduced by 

Bloom Energy. These companies use huge amounts of consistent electricity to power their server 

farms and need to provide extensive back-up systems to keep them running in case of power 

outages. The fuel cells can serve both needs by providing a reliable source of baseload power. 

The figure below shows some stationary power fuel cells. 
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Figure 9.Stationary power fuel cells 

2.2.1 Regulatory Standards  

A series of standards are available to facilitate the application of stationary fuel cell technology 

power plants. The prominent ones include: 

a. Fuel Cell Power Systems ANSI/CSA America FC1-2004 

b. Stationary Fuel Cell Power Systems - Safety IEC TC 105 Working Group #3 

c. Stationary Fuel Cell Power Systems - Installation IEC TC 105 Working Group #5 

d. Interconnecting Distributed Resources IEEE P1547.1, P1547.2, P1547.3, P1547.4 

e. Test Method for the Performance of Stationary Fuel Cell Power Plants IEC TC 105 

Working Group #4 

2.3 Portable Power Systems  

Fuel cells can power almost any portable device or machine that uses batteries. Unlike a typical 

battery, which eventually goes dead, a fuel cell continues to produce energy as long as fuel and 

oxidant are supplied. Radios, laptops, cellular phones, cameras, video recorders, mp3 players, 
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portable chargers, toys, educational kits, and military gadgets could be powered by portable fuel 

cells. 

Portable fuel cells are lightweight, long-lasting power sources that extend the time a device can be 

used without recharging. In comparison, secondary (rechargeable) batteries have battery charger 

systems that consist of AC chargers that require an outlet to be charged or DC chargers that will 

recharge your batteries from other batteries. Because rechargeable batteries are heavy and do not 

meet the power requirements, they are not suitable for some portable and defense electronic 

devices such as power tools, military equipment, battery chargers, unattended sensors, and 

unmanned aerial and underwater vehicles. 

A notable difference between rechargeable batteries and fuel cells is that a fuel cell needs a 

continuous supply of fuel. Metal hydrides, methanol, formic acid, ethanol, and, of course, 

hydrogen have all been utilized in fuel cells. For portable fuel cells, methanol or ethanol can be 

fed directly into the cell, or a fuel reformer can be attached to the fuel cell package. 

There are already commercial auxiliary power units with fuel cell technology as well as toys, 

educational kits, and portable chargers. Figure below shows some portable applications of fuel 

cells. 

 

 

Figure 10.Portable fuel cell applications 
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2.3.1 Fuel Cells for Your Home 

While fuel cells in the United States are today targeted towards commercial use, in Europe and 

Japan, portable fuel cells are beginning to be manufactured and sold for the residential market. In 

Japan, portable fuel cells, about the size of a refrigerator, are being sold for $30,000 ($15,000 after 

government subsidy). To date, about 5,000 of the units have been installed. But, with mass 

production, analysts expect the cost to drop to about $5,000 within five years and one in four 

homes in Japan to have them by 2050. Beyond reducing dependency on the electric grid, 

converting natural gas into electricity (with the waste heat being used for space and hot water 

heating) would save homeowners a considerable amount in energy costs and reduce the net carbon 

emissions of a home. 

2.4 Combined Heat and Power (CHP) Applications 

Fuel cells can be made even more efficient through cogeneration – i.e., combined heat and power 

(CHP) systems. A CHP system consists of a prime mover, an electricity generator, a heat recovery 

system, and a control system. The prime mover generates electricity via driving the generator and 

creates usable heat that is recovered and used for heating purposes. Another benefit of CHP is 

being able to utilize almost any primary fuel depending on the prime mover. Some prime movers 

can even use multiple fuel types, which provides flexibility against price volatility and addresses 

energy security concerns. 

Since power and generation is combined and located at/close to point of use, CHP systems have 

smaller losses and may reach much higher total efficiency levels. 

Primary applications for CHP in the commercial/institutional sectors are those building types with 

relatively high and coincident electric and hot water/space heating demand such as colleges and 

universities, hospitals, nursing homes, and lodging. Cogeneration systems can reach 80% 

efficiency (of which 40-60% is electric). 
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Figure 11.Fuel Cells in CHP Applications 

2.5 Other Applications 

The uses listed above are just some of the examples of where fuel cells could be used. Other 

applications include power for base stations and telecommunication sites, distributed power 

generation, emergency power systems as a backup for when other systems fail, 

telecommunications, base load power plants, portable charging stations for small electronic 

devices, small heating appliances, food preservation for shipping containers (exhausting the 

oxygen through power generation), and electrochemical sensors. 

Thermally driven cooling systems are designed to use heat for cooling purposes using absorption 

chillers. Although compared to conventional vapor compression refrigeration systems, they have 

lower efficiency (coefficient of performance, COP) and higher capital costs, their ability to utilize 

waste energy makes them attractive especially when there is a large amount of waste heat available.  

Fuel cells have been used in NASA spacecraft since the Gemini program in the 1960s and even 

today they provide electricity and drinking water for astronauts on Space Shuttle flights.  



Introduction to Fuel Cells – R07-001 

 

   

  27 

 
 
 

3 CHAPTER -3:  TECHNOLOGY DESCRIPTION 

Fuel cells produce direct current (DC) electricity through an electrochemical process, much like a 

standard battery. Unlike a standard battery, a fuel supply continuously replenishes the fuel cell. 

The reactants, usually hydrogen and oxygen gas, are fed into the fuel cell reactor, and power is 

generated. The hydrogen (H2) typically comes from a hydrocarbon fuel like natural gas or LPG, 

while the oxygen (O2) comes from the air. 

3.1 Hydrogen Fuel Cells 

Hydrogen fuel cells generate electricity through a chemical reaction of hydrogen and oxygen 

without combustion, creating zero emissions. Hydrogen gas is passed through a fuel cell stack 

where the pure hydrogen mixes with atmospheric oxygen to generate electricity.  

A typical hydrogen fuel cell works in the following way: 

Hydrogen fuel flows into the anode side of the fuel cell while oxygen in the air is introduced to 

the cathode side. At the anode, the reactions break down the hydrogen molecules into protons 

(hydrogen ions) and electrons.  

Both types of ions are naturally drawn to the cathode, but only the protons (H+ ions) can pass 

through the electrolyte membrane to the cathode. The negatively charged electrons are forced to 

travel through an external circuit to the cathode and produce an electric current that can power an 

electric load. 

At the cathode, the catalyst breaks down the oxygen molecules and facilitates the electrochemical 

reaction that combines oxygen, protons, and electrons to produce water and heat. 

The figure below illustrates the electrochemical process in a typical fuel cell.  
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Figure 12.Generic Hydrogen Fuel Cell Operation 

3.1.1 Reactions 

Anode Reaction 

At the anode, the hydrogen gas is electrochemically dissociated (in the presence of a catalyst) into 

hydrogen ions (H+) and free electrons (e-).  

2H2 → 4H+ + 4e- 

The electrons flow out of the anode through an external electrical circuit. The hydrogen ions flow 

into the electrolyte layer and eventually to the cathode, driven by both concentration and potential 

forces.  

Cathode Reaction 

At the cathode, the oxygen gas is electrochemically combined (in the presence of a catalyst) with 

the hydrogen ions and free electrons to generate water. 

O2 + 4H+ + 4e- → 2H2O  
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Net Cell Reaction  

Individual reactions at the anode and cathode always remain balanced, which means that the same 

number of electrons are gained and lost. The overall reaction in a fuel cell is: 

2H2 + O2 → 2H2O (vapor) + Energy 

The reaction rate of this electrochemical reaction is quite low. This issue is overcome with the help 

of a catalyst such as platinum or palladium. To increase the effective surface area, the catalyst is 

finely divided before being incorporated into the electrodes. 

3.1 Fuel Cell Stack  

The fuel cell's output power is the product of current (amps) and operational voltage (V). A typical 

fuel cell provides a voltage between 0.6 and 0.7 V at full load. Many individual single cells can be 

combined into a fuel cell stack and connected electrically in series or parallel to produce the voltage 

and current level desired. They are stacked one on top of the other. The number of fuel cells 

connected in series determines the stack voltage because, in series, the total voltage equals the sum 

of individual voltages.  

For a stack of fuel cells, since each individual cell has the same voltage, we just need to multiply 

that voltage with the number of single cells to calculate the total voltage of the stack. The number 

of the cells connected in parallel determines the total currents produced because, in parallel, the 

total current equals the sum of individual currents. Then the power can be found as the product of 

the current and the voltage.  
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Figure 13.PEMFC Cell Stack 

3.2 Main Components of Fuel Cell  

3.2.1 Electrodes  

A typical single fuel cell is comprised of two oppositely charged electrodes on two sides and an 

electrolyte in the center. The anode is negatively charged and repels electrons. The cathode is 

positively charged and attracts electrons. Electrodes are commonly formed of porous, hydrophobic 

(non-wettable), conductive, and non-corrosive carbon fiber paper. The material is very thin to 

maximize gas and water transport. 

The ideal electrodes have the following properties: 

a. Good electrical conductors 

b. Highly resistant to a corrosive environment 

c. Should perform charge separation 

d. It should not take part in chemical reactions 

3.2.2 Electrolyte 

The electrolyte is a material that transports charged ions from one electrode to the other.  
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The primary requirement is that the electrolytes must have strong ionic conductivity while 

remaining electrically non-conductive to avoid short-circuiting the anode and cathode. For 

example, the membrane-type electrolyte in PEMFC solely transmits positively charged ions and 

blocks the passage of electrons. The electrolyte should not react with any of the reactants or 

products of the process and should be inaccessible for gases to prevent undesired reactions. 

3.2.3 Catalyst 

The catalyst is coated at the interface of each electrode with the electrolyte. The catalyst is used to 

speed up the electrochemical reaction. Therefore, the type of catalyst used depends upon the 

operating temperature of each type of fuel cell. Generally, high operating temperature fuel cells 

can use common metals as a catalyst, but the low operating temperature fuel cells require noble 

metals as a catalyst, typically platinum because at low-temperature noble metals like platinum has 

a better ability to break the hydrogen bonding than common metals because of the outer layer of 

the electron configuration.  

Caution: The platinum catalyst used in Proton Exchange Membrane Fuel Cell (PEMFC) some 

other cells is extremely sensitive to poisoning by even small amounts of Carbon Monoxide making 

it necessary to employ additional filtering processes in the system to eliminate potential 

contaminants. 

3.3 Fuel Cell Types & Construction  

There are five principal types of fuel cells: 

a. Proton Exchange Membrane Fuel Cell (PEMFC) 

b. Molten Carbonate Fuel Cell (MCFC) 

c. Solid Oxide Fuel Cell (SOFC) 

d. Phosphoric Acid Fuel Cell (PAFC) 

e. Alkaline Fuel Cell (AFC) 

An electrolyte and two electrodes are the essential components of all fuel cells, but the electrolyte 

is what differentiates them. 
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The electrolyte is a substance that conducts ions but not electricity. It can be a membrane, a liquid 

solution, or a solid depending on the type of the fuel cell. For instance, PEM fuel cells use a water-

based or mineral-acid-based polymer membrane as an electrolyte. SOFCs use a non-porous metal 

oxide as the electrolyte while phosphoric acid fuel cells (PAFCs) utilize a concentrated 100% 

phosphoric acid liquid as the electrolyte. As a result, the conduction mechanisms are different. 

SOFCs have ionic conductions accomplished by oxygen ions while PAFCs have the permeation 

of hydrogen ions through the electrolyte layer.  

We will learn more details about these sub-components in subsequent chapters. 

3.4 Fuel Cell Subsystems 

The block diagram below represents a fuel cell power generation plant. It comprises four basic 

components:  

a. A fuel processor  

b. Power section - an energy conversion device   

c. Power conditioner - current converter   

d. Heat recovery system 

 

 

Figure 14.Fuel cell power plant 
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3.4.1 Fuel Processor or Reformer 

Stationary power generation uses high-temperature fuel cells fed by hydrocarbons like natural gas. 

To turn natural gas into hydrogen-rich gas, a fuel processor (also called reformer) is necessary. 

Fuel is introduced into a processor, which produces hydrogen-rich gas from natural gas or other 

fuels, emitting carbon dioxide and a trace amounts of carbon monoxide compounds called 

“reformate”.  

If hydrogen is fed to the system, a processor may not be required, or it may only be needed to filter 

impurities out of the hydrogen gas. In many cases, the reformate is then sent to another reactor to 

remove impurities, such as carbon oxides or sulfur before it is sent to the fuel cell stack. This 

prevents impurities in the gas from binding with the fuel cell catalysts. This binding process is also 

called “poisoning” since it reduces the efficiency and life expectancy of the fuel cell.  

Depending on the types of fuel cells and their operating temperature, the reformer can be internal 

or external. For example, high operating temperature fuel cells such as molten carbonate and solid 

oxide fuel cells do not require external reformers; they can be reformed internally.  

There are three primary types of reformers:  

a. Steam reformers 

b. Autothermal reformers 

c. Partial oxidation reformers 

The fundamental differences are the source of oxygen used to combine with the carbon in the fuel 

to release the hydrogen gases and the thermal balance of the chemical process. Steam reformers 

use steam, while partial oxidation units use oxygen gas, and autothermal reformers use both steam 

and oxygen. 

a. Steam reforming is highly endothermic and takes a lot of heat input.  

b. Autothermal reformers typically operate at or near the thermal neutral point, and these do 

not generate or consume thermal energy.  

c. Partial oxidation units partially oxidize the fuel (i.e., combust a portion of the fuel), 

releasing heat in the process.  
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Since the reformer is an endothermic catalytic converter and the fuel cell is an exothermic catalytic 

oxidizer, the two combines into one with mutual thermal benefits. 

3.4.2 Power Section 

After the reforming process, the hydrogen-rich gas and oxygen from airflow into a power section 

where direct current is generated from electrochemical reactions that take place in the fuel cell. 

Water and heat are also produced.  

3.4.3 Power Conditioner 

Fuel cells produce direct current (DC). The power conditioner consisting of an inverter converts 

the direct current (DC) electricity to alternating current (AC) electricity for suitable use in most 

electrical devices. The power conditioner is used to control current flow, voltage, frequency, and 

other characteristics of the electrical current to meet the needs of the application.  

 

 

Figure 15.Heat and Power Flows within Fuel Cell System 

3.4.4 Heat Recovery System 

A heat recovery system is typically used in high-temperature fuel cell systems. The excess heat 

generated by high-temperature fuel cells can be used to produce steam or hot water or can be 

converted to electricity via a gas turbine or other technology. This cogeneration can increase the 
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overall thermal efficiency of the systems. A vapor absorption chiller machine can be used to 

generate chilled water using the waste heat. 

3.5 Balance of Plant (BOP) 

The fuel cell stack alone cannot generate electricity. Practical systems require sub-systems to 

supply fuel and control the energy conversion processes. The "balance of plant" is as expensive 

and complex as the fuel cell stack itself. Some of this equipment is outlined below. 

3.5.1 Fuel Supply or Storage  

When natural gas is used as a fuel, the hydrogen generation is carried out on-site using a 

“Reformer”. The reformer is the largest device requiring big storage capacity to store the reformate 

fuel. 

If Hydrogen generation is not part of the system, there must be some form of storage to carry the 

Hydrogen fuel to be consumed by the fuel cell. This requires expensive high-pressure tanks or 

cryogenic storage tanks. 

3.5.2 Pumps, Compressors, and Expanders 

Pumps are needed to pump the reactant air through the stack and to provide forced cooling.  

Higher power systems require compressors to handle the higher airflow rates. 

Expanders are needed to reduce the high pressure of the stored hydrogen to the required input 

pressure at the stack. 

3.5.3 Filters 

Filters are required to remove pollutants from the fuel that could harm the catalysts or damage the 

cells, lowering power output and eventually causing their shut down. Particular offenders are 

Carbon Monoxide, resulting from incomplete reactions in the reformer, which affects the platinum 

catalysts, and Sulphur found in reformates derived from fossil fuels, such as coal, oil, and natural 

gas, which contaminates the Hydrogen gas and in turn attacks and degrades the anodes. 



Introduction to Fuel Cells – R07-001 

 

   

  36 

 
 
 

3.5.4 Thermal Management 

High power systems use forced cooling with fluid coolants to remove the heat. This requires fluid 

pumps and a radiator/heat exchanger to expel the heat. 

The system also requires heaters to bring the stack temperature up to its operating point on startup. 

An overall thermal management system is required to balance the heat flows to keep the 

temperature of the stack at its optimum operating point. 

3.5.5 Water Management 

The conductivity of the electrolyte in the cell is proportional to the water content and it must be 

kept moist to remain conductive. The airflow and the heat generation in the cell tend to work 

against this. Consequently, the air supplied to the cell must be humidified to stop electrolyte drying 

out and this requires a humidifier. 

Cold temperature operation in freezing conditions also brings problems due to the formation of ice 

crystals which can damage the electrolyte or membrane. The system must incorporate a method of 

purging the water or alternative anti-freeze controls. 

Another pump may be required to remove surplus water from the cathode. 

3.5.6 Electrical Power Management 

Though some fuel cells may be required to provide a steady operating current and voltage, most 

systems must be responsive to variable demands. This means that the system should provide for a 

variable output current and consequently, all the fuel, air, and water flows must be varied 

accordingly. At the same time, the heat dissipation will change, and the temperature must be 

maintained within its designed operating range. The same will apply to the reformer if this is part 

of the system. 

The fuel cell system output voltage is fixed but the application may require a different voltage or, 

in the case of most distributed power generators, an alternating current output. In these cases, 

DC/DC converters or AC inverters may be an integral part of the system. 
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3.5.7 Electric Motors 

Motors of different sizes are required to drive the pumps and compressors. 

3.5.8 Sensors 

Sensors are required to monitor temperatures, pressures, fluid, and gas flows as well as electrical 

currents and voltages. 

3.5.9 Battery 

The fuel cell does not start to deliver electrical energy until it approaches its operating point. 

During startup, batteries are required to power all the electronic control systems, as well as the 

pumps, compressors, and heaters needed to get the stack up to its operating point. 

The battery also provides an independent stable voltage to power the system electronics. Because 

of the slow dynamic performance of the fuel cell, the battery may also be required to provide a 

temporary power boost when the fuel cell is subject to sudden demand. 

3.5.10 Safety Systems 

Safety systems must provide fail-safe operation, protecting the system from out-of-tolerance 

conditions and abuse and shutting it down if necessary. 

3.5.11 Control System 

The system could not function without comprehensive electronic control systems to manage all 

the sub-systems listed above.  



Introduction to Fuel Cells – R07-001 

 

   

  38 

 
 
 

4 CHAPTER - 4:  TYPES OF FUEL CELLS  

There are different fuel cell technologies on the market, and each one is distinguished by the type 

of electrolyte it employs. The type of electrolyte used in each fuel cell technology impacts the 

operating temperature range and efficiency. Available technologies include: 

a. Polymer Electrolyte Membrane (PEMFC) 

b. Direct methanol (DMFC)  

c. Alkaline (AFC)  

d. Phosphoric acid (PAFC)  

e. Molten carbonate (MCFC)  

f. Solid oxide (SOFC)  

Each fuel cell type has an optimal temperature for ionic conductivity and component stability. 

Operating temperatures vary from near-ambient to 1,000°C, and electrical generating efficiencies 

range from 30 percent to over 50 percent on a Higher Heating Value (HHV) basis. 

 

 

Figure 16.Fuel Cell Module 

4.1 Classification of Fuel Cells 

Fuel cells can be classified into two classes: 

a. High-temperature Fuel Cells (for stationary power applications) 

b. Low-temperature Fuel Cells (for transportation applications) 
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The low-temperature fuel cells are ideally suited to transportation applications and high-

temperature fuel cells are suited to power generation. It is important to distinguish between the 

low-temperature and high temperature variants because it places a different demand on the fuel 

cell stack and system. 

4.1.1 High-temperature Fuel Cells 

High-temperature fuel cells reach above 600°C. 

The high temperatures permit the spontaneous internal reforming of light hydrocarbon fuels — 

such as methane — into hydrogen and carbon in the presence of water. High-temperature fuel cells 

react quickly and effectively without expensive electrocatalysts like platinum. This reaction occurs 

at the anode over a nickel catalyst.  

The high-temperature operation has drawbacks of material breakdown and slow startup, making it 

unsuitable for multi-fold applications. Because this technology is not appropriate for rapid startup, 

current high-temperature fuel cell applications are limited to stationary power generation. 

High-temperature fuel cells include: 

a. Molten carbonate (MCFC) 

b. Solid oxide (SOFC) 

4.1.1.1 Characteristics of High Temperature Fuel Cells 

The high temperature fuel cells can be classed as having the following general features: 

a. Primary application – Stationary Power Generation 

b. Fuel flexibility: they can be operated on a range of hydrocarbon fuels. 

c. They don’t require platinum as a catalyst. 

d. They can generate useful high-grade waste heat and are therefore well suited in 

downstream processes for cogeneration purposes.  

e. They exhibit long start-up times and are sensitive to thermal transients. 
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f. They suffer from severe materials problems to withstand the operating temperature, 

particularly in the balance of plant (piping, heat exchangers, etc.). Few materials can work 

for extended periods without degradation within a chemical environment at high 

temperatures.  

g. Reliability and durability is a concern, again due to the operating temperature. 

h. They can be integrated with a gas turbine, offering high efficiency combined cycles. 

4.1.2 Low-temperature Fuel Cells 

Low-temperature fuel cells typically operate below 250ºC and are suitable for vehicle applications. 

The most prominent low-temperature fuel cells are:  

a. Proton exchange membrane (PEMFC) 

b. Phosphoric acid (PAFC)  

c. Direct methanol (DMFC)  

d. Alkaline (AFC) 

4.1.2.1 Characteristics of Low-temperature Fuel Cells 

The low-temperature fuel cells can be distinguished by the following common characteristics: 

a. Primary application – Transportation and portable devices 

b. They require a relatively pure supply of hydrogen as a fuel. 

c. They generally incorporate precious metal electrocatalysts to improve performance. 

d. They exhibit fast dynamic response and quick startup. 

4.2 Fuel Cell Types 

The basic chemistry of fuel cells can be modified to fulfill the various design and operating 

characteristics. Typically,  

a. Higher power outputs can be achieved by operating at high temperatures and by using 

electrodes with a greater surface area.  

b. Lower operating temperatures can be obtained by using more expensive catalysts. 
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4.2.1 Proton Exchange Membrane Fuel Cell (PEMFC)  

Proton exchange membrane fuel cells (PEMFC or PEM fuel cells) use a water-based or mineral-

acid-based polymer membrane as an electrolyte and platinum group-based electrodes.  

The water-based PEM fuel cells operate at 80-100ºC while the mineral-acid-based PEMs, known 

as high-temperature PEMs (or HTPEMs) operate at up to 200ºC. 

Pure hydrogen gas is the typical fuel for PEM fuel cells and have 40-60 percent efficiency range. 

They require precise humidity conditions to operate, and their acidic nature requires the use of a 

platinum catalyst.  

PEM fuel cells are relatively small and lightweight and are the leading fuel cell technology in 

material handling applications such as forklifts and for transportation applications, including cars, 

buses, and trucks. 

4.2.2 Direct Methanol Fuel Cell (DMFC) 

Much like PEMFC, Direct Methanol Fuel Cells (DMFCs) use a polymer membrane as an 

electrolyte and a platinum catalyst as well.  Unlike PEMFCs, they use methanol as a liquid fuel, 

avoiding both hydrogen supply issues and the need for an onboard reformer. 

They work at temperatures between 50°C and 100°C, but their power output is minimal, limiting 

their use to portable electronics. 

4.2.3 Alkaline Fuel Cell (AFC) 

Alkaline Fuel Cells (AFC) use a liquid alkaline electrolyte such as potassium hydroxide (KOH) in 

water and cathodes that are usually made with platinum.  

These cells operate at relatively low temperatures (approximately 60-90ºC). AFCs are among the 

most efficient type of fuel cells, reaching up to 60% efficiency and up to 87% combined heat and 

power.  

They are cheaper than PEMFC but produce less power. The drawback is that the catalyst is 

susceptible to CO2 poisoning.  
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Some other advantages of AFCs include their virtually instant operation without pre-heating, even 

at sub-zero temperatures, and their resistance to humidity and salt air. AFCs are used as backup 

generators or long-duration UPSs, for powering telecom towers and urban buses. They are 

primarily used in controlled aerospace and underwater applications. They are best known for 

providing drinking water and electricity to the astronauts of the NASA Apollo expedition. 

4.2.4 Phosphoric Acid Fuel Cell (PAFC) 

Phosphoric acid fuel cells (PAFCs) use phosphoric acid as an electrolyte and an anode and cathode 

made of a finely dispersed platinum catalyst on a carbon and silicon carbide structure.  

PAFCs run at a higher temperature of around 150 - 220°C range, allowing them to handle small 

amounts of fuel impurities. They have a relatively low efficiency of around 35%. Inefficient 

conversion results in significant heat output in the fuel cell stack. Water management in these fuel 

cells is easier than in PEMs, and they are more tolerant of impurities in hydrogen. However, the 

emission of phosphoric acid vapor is problematic and good ventilation is mandatory. PAFCs are 

less powerful than other fuel cells for the same weight and volume and require much more platinum 

than other fuel cells, which raises their cost. 

They are one of the most mature types of fuel cells and the first type to be commercially used. 

They have been typically used for stationary power generation in buildings, hotels, hospitals, and 

utilities in the USA, Europe, and Asia.  

4.2.5 Molten Carbonate Fuel Cells (MCFCs)  

Molten Carbonate Fuel Cells (MCFCs) use a molten carbonate electrolyte and operate at 650 ºC, 

which allows them to operate on unreformed fuels such as natural gas, methanol, ethanol, biogas, 

and coal. In addition, the absence of a catalyst made from noble metals such as gold, silver, or 

platinum allows MCFCs to be more cost- competitive with more traditional sources of power.  

MCFCs also offer efficiency levels of close to 50%, which can be increased up to 80% when high-

quality waste heat is reused.  MCFCs require many stainless steel and nickel parts that increase 

the materials cost and that may require specialized manufacturing techniques. Molten carbonate is 

also inherently corrosive in nature.  
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Since the operating temperature is so high, MCFCs require significant time to reach operating 

temperature and are slow to respond to sudden changes in electricity demand. As such, they are 

best suited for the provision of constant power in large utility applications. 

4.2.6 Solid Oxide Fuel Cell (SOFC) 

Solid oxide fuel cells are made up of a very thin layer of ceramics. The ceramics used in SOFCs 

do not become electrically and ionically active until they reach 500-1000ºC and the high 

temperature enables them to oxidize nearly any fuel, including gasoline, diesel, natural gas, 

biofuels, hydrogen, and even coal gas.  

SOFC replaces the membrane and gas diffusion layer found in PEMFC with a cathode-electrolyte-

anode assembly and like MAFCs, they don’t need a platinum catalyst. 

The ceramic construction needed to provide stability and reliability makes SOFCs more expensive 

than other fuel cells. The solid electrolyte is made from a ceramic material called Yttria-Stabilized 

Zirconia (YSZ).  

Since the operating temperature is so high, SOFCs require significant time to reach operating 

temperature and are slow to respond to changes in electricity demand. As such, they are best suited 

for large stationary power generation applications. 

We will learn more about the different types in subsequent chapters.  
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5 CHAPTER - 5: PROTON EXCHANGE MEMBRANE FUEL CELLS  

PEM fuel cells (PEMFCs) are low-temperature fuel cells that use a solid polymer as an electrolyte, 

eliminating the need for corrosive liquids. Hydrogen is delivered as fuel into the anode side and 

the oxidant, normally air, into the cathode side.  

The electrolyte prevents the direct reaction between the fuel and the oxidant, but it allows ions to 

travel across it. Accordingly, at the anode side, the hydrogen is ionized to form protons (H+) which 

can cross the electrolyte, whereas, at the cathode, oxygen is reduced and forms water with protons 

(H+) that are transported through the proton conductive membrane. The sub-reactions and overall 

reaction can be expressed by the following equations: 

Anode reaction: H2 → 2H+ + 2e-  

Cathode reaction:  ½O2 +2H+ + 2e- → H2O 

Overall reaction:  H2 + ½O2 → H2O 

The following figure depicts the PEMFC's basic principle. 

 

 

Figure 17.Basic Principle of PEMFC 
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PEMFCs have modest operating temperatures (70 to 90ºC) and pressures 15-30 psig (1 to 2 barg). 

Each cell can generate 0.6-0.7 volts DC. 

This technology has received the most attention due to its ease of use, and speedy start-up (low 

operative temperature).  

PEMFC’s have high power density and can vary their output quickly to meet demand. But the 

drawback is that at low temperatures, an electrochemical reaction requires an expensive noble 

metal catalyst (usually platinum). This type of fuel cell is highly sensitive to CO poisoning. 

5.1 Main Components of PEMFC  

Practically, the primary components of a PEM fuel cell are: 

a. The ion exchange membrane as solid electrolyte 

b. An electrically conductive, porous gas diffusion layer 

c. An electro-catalyst (the electrodes) at the interface between the backing layer and the 

membrane 

d. Cell interconnects and flow plates that deliver the fuel and oxidant to reactive sites via flow 

channels and electrically connect the cells.  

Generally, the first three components are joined together to form a Membrane Electrode Assembly 

(MEA) which is the heart of the PEM fuel cell.  
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Figure 18.Structure of PEMFC 

5.2 Materials of PEMFC 

In this section, the engineering materials used in these main components will be explored. 

5.2.1 Membrane 

The membrane is a specially treated material that looks something like ordinary kitchen plastic 

wrap. 

The membrane materials should be able to conduct only positively charged ions and blocks the 

electrons, and therefore, the ionic conductivity is the most important feature of electrolyte material. 

In addition to the high ion conductivity, the membrane should be durable, robust, and resistant to 

chemical attacks. 

The choice of membrane materials depends on the temperature range at which the fuel cells are 

operating so that the membrane should have a wide operating temperature range -30°C to 200°C. 

The most widely utilized membrane is “NAFION” (a proprietary product of DuPont), a sulfonated 

polymer containing a PFTE (Teflon). The sulfonated polymers are comprised of perfluorinated 
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back-bones and sulfonated sidechains. The perfluoroether is responsible for the chemical stability 

while the function of sulfonated sidechains is to aggregate and facilitate hydration.  

The main challenges associated with the use of the perfluorinated membrane can be summarized 

as follow: 

a. The complicated and environmentally unfriendly production process involves toxic 

intermediates and waste products. 

b. Very high-cost materials (~$700/m2) 

c. The dependence of proton conductivity on the water content of the membrane may lead to 

the use of humidification equipment to reach the required level of humidity. 

d. Inoperability at high temperatures. 

e. Swelling and shrinking may be occurred during the operation due to changes in water 

uptake during humidity and thermal cycling. 

f. Chemical degradation may happen the over long-term operation of the PEM fuel cell. This 

degradation is attributed to peroxide formation that attacks the membrane’s structure by 

contaminant transition metal ions forming reactive peroxyl and/or hydroxyl radicals. 

Its thickness is 50-175 m. The thinner Nafion membrane provides for better cell conductivity but 

complicates water management. A thicker membrane slows down the conductivity.  

Significant research efforts have been made to overcome the challenges and to develop cheaper 

and less water-dependent membrane material. 

5.2.2 Electro-Catalyst Layer 

The function of electrocatalyst layer is to initiate the dissociation of the hydrogen, on the anode 

side, and for accelerating the oxygen reduction reaction (ORR) on the cathode side. Then, the 

electrons, produced on the anode side, travel through an external circuit to produce the current 

while the protons traverse the membrane to the cathode side of the membrane and combine with 

the oxygen and the electrons arriving from the external circuit to produce water and heat. 

In low-temperature applications, as in PEM fuel cells which operate with pure hydrogen and air, 

platinum is extensively employed as a catalyst because it is the most active noble metal. Generally, 

the platinum-based catalyst layers are excellent for fuel cells with comparatively clean reactants. 
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However, the major challenge of the platinum-based catalyst arises when the hydrogen fuel 

contains residual mono oxide (CO). The CO poisons the Pt catalyst layer leading to a steady 

degradation of the fuel cell performance. 

Reducing the amount of platinum in the electro-catalyst layer can reduce the overall cost of the 

PEMFC technology and allow for mass production. Mainly, the platinum content can be reduced 

either by alloying it with low-cost metals as pointed out before, or by the application of core-shell 

catalysts.  

5.2.3 Gas diffusion layer (GDL) 

The gas diffusion layer (GDL) is the outer layer of the membrane electrode assembly (MEA) and 

is placed between the flow plates and catalyst layer. The GDL, which is thicker than the catalyst 

layer, serves many important tasks in the PEMFC:  

a. Provide mechanical support for the catalyst structure and membrane 

b. conduct electrons between the bipolar plate and the electrode 

c. protect the catalyst layer from corrosion or erosion caused by flows 

d. balance water retention (for membrane conductivity) with water release (needed to keep 

the pores open so hydrogen and oxygen can diffuse into the electrodes) 

e. disperse the reactant uniformly from the flow plates over the catalyst layer. 

To fulfil all the above functions, The GDL should have high electronic and thermal conductivity, 

has a porous nature, thicker than the catalyst ,and hydrophilic. The most popular materials used as 

GDL in PEMFC are carbon fiber paper and carbon cloth. 

5.2.4 Bipolar Flow Plates & Gaskets 

The flow plates, used on the cathode and anode side of a PEMFC, distribute fuel and oxidant to 

reactive sites, collect produced current, remove reaction products and heat, facilitate water 

management through the cell and provide mechanical support for the cells in a PEMFC stack.  

The material and design of the flow plates play a major role in the performance of the PEMFC. 

The flow channels are machined or pressed into the graphite plates. Graphite is preferred for its 

high conductivity and low cost. This is the same material used for the gas flow field plates. 
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Each flow field plate includes a serpentine gas channel to optimize gas contact with the MEA. A 

consistent gas channel geometry ensures cell stability and product water management. Various 

designs for the flow field are available including pins, straight channels, serpentine channels, 

integrated channels, interdigitated channels, and bioinspired flow fields. 

 

Figure 19.PEM Flow Field Plates 

Metallic-based bipolar flow plates (SS or Titanium alloys) exhibit several advantages over 

graphite-based ones including higher strength, lower manufacturing cost, and better electrical 

conductivity. The major drawback of the metal-based flow plates is the tendency to corrode in the 

PEM fuel cell environment. 

Gaskets must be added around the edges of the MEA to achieve a gas-tight seal. These gaskets are 

usually made of a rubbery polymer. 
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Figure 20. PEM Membrane Electrode Assemblies 

5.2.1 Humidifiers  

In PEM fuel cells, the reactant gases must be humidified because ion conduction cannot occur 

without humidification. 

To achieve maximum water saturation of the reactant gases, humidification must occur at or near 

the working temperature of the fuel cell (as set by the stack coolant temperature).  

Some fuel cell stacks feature inside humidifiers, while others have external humidifiers. 

5.3 Factors Affecting the Performance of Hydrogen Fuel Cell  

The performance of the PEM fuel cell can be described by a characteristic curve which plots the 

voltage output as a function of electrical current density, called as (I-V) curve, as shown in Figure 

below.  
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Figure 21.Typical I-V Curve for  PEM Fuel Cell 

The ideal voltage- current curve is a straight line at 1.23 volts. However, this is not the case for the 

practical fuel cells which have many types of losses. These losses can be categorized into three 

main groups as follow:  

1) Kinetics losses which are due to the poor electrode kinetics and it can be improved by the 

characteristics of the electrocatalytic layer  

2) Ohmic losses which are due to the ohmic resistance of the cell components.  

3) And finally, mass transport loses which are because the water generated from the reaction 

blocks the channels and lead to the limited diffusion of reactant gases.  

Although several factors influence PEMFC performance, we will focus on temperature. 

Parameters Effect on the parameters Remarks 

Performance and 

efficiency 

Increases with the increase 

in temperature 

The PEMFC shows better performance with 

the rise in temperature and pressure. Because 

the entropy change is small during the rise in 

temperature and pressure, it results in better 

and stable performance in a fuel cell. As the 

thermal energy is improved, the overall 

performance like current, current density, 
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voltage, electricity production of a proton 

exchange membrane fuel cell improves. 

Humidity Optimum temperature 

maintains the required 

humidity 

The proton exchange quality of the 

membrane depends on the humid condition 

of the membrane. The presence of water in 

the membrane maintains the optimum humid 

condition. Adequate water is required for the 

membrane to be hydrated and the rest of the 

water needs to come out of the fuel cell for 

better performance. 

Power Production Increases with the increase 

in temperature 

The density of power production rises by 

16% for the operational temperature rise 

from 50℃ to 80℃. 

Voltage Increases with the increase 

in temperature 

According to the Nernst equation, the 

temperature is proportional to the output 

voltage. Higher temperature leads to faster 

kinetics and as a result, the voltage is also 

increased. 

Leakage Current Increases with the increase 

in temperature 

The membrane of PEMFC is regarded as 

hydrogen impermeable and electrically 

insulated. But leakage current still occurs 

within the fuel cell. It is often supposed to be 

around 0.01 A.cm-2 in PEM fuel cell 

simulation literature. 
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Catalyst Tolerance Increases with the increase 

in temperature 

The efficiency of catalyst decay over time 

depends on the hydrogen oxidation reaction, 

oxygen reduction reaction, high potential, 

and pH environment. Platinum catalyst plays 

a vital role in the performance of fuel cells. 

The oxygen reduction reaction in the cathode 

is a slow reaction process. To overcome the 

slowness, an effective catalyst can accelerate 

the oxygen reaction rate in the cathode which 

will improve the PEMFC efficiency rapidly. 

Mass cross-over Decreases with the increase 

in temperature 

If the temperature rises, the mass cross-over 

falls and concentration over-potential rises. 

The current density becomes high.  

On the other hand, the activation over-

potential remains static up to the 80℃. Then 

towards 100℃, the activation over-potential 

rises. It is considered that up to 80℃, the 

PEMFC efficiency remains in good 

condition. 

Durability Decreases with the increase 

in temperature 

The durability of the catalyst, electrode plate, 

gas diffusion layer, the gasket is directly 

related to the longevity of the proton 

exchange membrane. Electrochemical 

erosion, component erosion, and thermal 

effect are the leading factors for the longevity 

of the proton exchange membrane. 

Table 2.Effect of Temperature on Parameters 
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5.4 PEMFC Advantages and Disadvantages  

5.4.1 Advantages 

a. Have high voltage, current and power density  

b. Operate at low pressure which ensures safety  

c. Operate at low temperatures around 70 -90°C enabling use of low-cost carbon materials.  

d. Quick startup and rapid response.  

e. Have good tolerance to differential reactant gas pressures  

f. Are compact and rugged  

g. Have relatively simple mechanical design  

5.4.2 Disadvantages 

The disadvantages are that they:  

a. Use an expensive platinum catalyst  

b. Can tolerate only a few ppm of total sulfur compounds  

c. Reactant gas humidification is necessary which adds to system complexity. 

d. PEM fuel cell catalyst is susceptible to CO poisoning due to their low operating 

temperature. Can tolerate only about 50 ppm carbon monoxide. If the reformate from 

hydrocarbons or alcohols is utilized as a fuel, the CO concentration must be decreased to 

10 ppm. 

e. Membrane electrolyte water management is crucial for cell performance. 

5.4.3 Challenges 

PEM fuel cell technology faces serious challenges in terms of cost, durability, and performance. 

Platinum is used as a catalyst in PEM fuel cells, which is a high-cost component, and it contributes 

significantly to the overall costs. 
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Mechanical durability is an important performance aspect for fuel cell power sources, especially 

in transportation. The mechanical durability of the fuel cell can be enhanced through the design 

and develop a bipolar plate with high mechanical strength and high corrosion resistance. Metals-

based flow plates provide several advantages over the traditional graphite flow plates from the 

durability point of view. The main drawback of the metallic flow plates is that they normally 

corrode in the PEM fuel cell environment.  

In addition to flow plate corrosion, long-term PEM fuel cell operation causes membrane 

degradation. The high cost and low durability of the PEM fuel cell are the main commercialization 

barriers of this technology.  

Understanding the materials utilized to manufacture the PEM fuel cell's key components and their 

present state of development may help immediately solve difficulties connected to the technology's 

main challenges (high cost and low durability), allowing for global commercialization. 

5.4.4 Applications 

The main application for PEM fuel cells is transportation, although they can also be used for 

stationary and portable power generators, and electronic devices. Because of its low-temperature 

operation, high-power density, fast start-up, system robustness, and reduced sealing, corrosion, 

shielding, or leaking concerns, it is also a potential candidate for small scale localized power 

generation, backup power applications such as communication towers and military equipment and 

can be implemented with a renewable energy system for energy storage application.    

A PEM fuel cell can be manufactured as a single cell for low power requirements or as a cell stack 

with numerous cells coupled to generate the desired voltage and power output. 

6 CHAPTER – 6:  PHOSPHORIC ACID FUEL CELL (PAFC)  

The Phosphoric Acid Fuel Cell (PAFC) is the most mature fuel cell technology in terms of system 

development and commercialization. It uses phosphoric acid (H3PO4) electrolyte in a Teflon® 

bonded silicon carbide matrix. Some acid fuel cells use a sulfuric acid electrolyte.  

6.1 Characteristics 

PAFCs have the following characteristics: 



Introduction to Fuel Cells – R07-001 

 

   

  56 

 
 
 

a. PAFC function at 150-220°C and 15 psig (1 barg). Each cell can produce 1.1 VDC.  

b. The operation life exceeds 65000 hours. 

c. The overall cell efficiency is up to 40% which can be boosted up to 60% using CHP.   

d. Because the cells operate at high temperatures, pure hydrogen is not required as a fuel. This 

permits the cell to run on somewhat impure hydrogen from the fuel reforming process. 

6.2 PAFC Structure  

The fundamental cell structure is a ceramic matrix filled with phosphoric acid solution, surrounded 

by porous electrodes for collecting ions and diffusing gases.  

The phosphoric acid-containing ceramic matrix is composed of 1 mm silicon carbide particles, 

with a matrix thickness of 0.1-0.2 mm. The porous structure of the matrix keeps the acid within 

the layer and prevents gas cross-over from anode to cathode.  

The operating temperature is around 150-220°C. The operating temperature requires platinum 

catalyst although at this temperature range it is sensitive to CO-poisoning. 

The figure below is a depiction of a PAFC. 

 

 

Figure 22.PAFC Structure 
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The oxygen needed for the cathode of the fuel cell is simply taken from the air. The hydrogen 

required for the anode must be extracted from liquid natural gas or methanol. This process is called 

reformation. 

The purified hydrogen is fed into the anode of the fuel cell. This fuel is fed through parallel grooves 

formed of carbon composite plates. These plates are electrically conductive and conduct electrons 

from the anode to the cathode of the adjacent cell. The design requires the plates to be “bi-polar” 

which means that one side supplies fuel to the anode, while the other side supplies air or oxygen 

to the cathode. All the hydrogen in the anode exhaust is not consumed in the fuel cell. The 

remaining anode exhaust is fed back into the reformer burner, which burns the remaining hydrogen 

and maintains the high temperature required for the reforming process. Also, water (steam) is 

recovered from the cathode exhaust to maintain the necessary water supply to the reformer. The 

water recovery procedure requires that the system be operated at temperatures around 190°C. If 

the water is not removed, it will dissolve in the phosphoric acid electrolyte and decompose the 

acid. 

Phosphoric acid is employed as the electrolyte because it is the only inorganic acid that has the 

required thermal, chemical, and electrochemical stability. Carbon monoxide poisoning and 

carbonate formation is not a problem for PAFCs since phosphoric acid requires high operating 

temperatures and does not react with CO2. 

6.2.1 Reactions 

Anode reaction: H2 → 2H+ + 2e-  

Cathode reaction:  ½O2 +2H+ + 2e- → H2O 

Overall reaction:  H2 + ½O2 → H2O 

6.3 Advantages and Disadvantages  

6.3.1 Advantages 

a. Simple construction, low electrolyte volatility, and long-term working stability. 

b. Are tolerant of carbon dioxide (up to 30%). So phosphoric acid fuel cells can use clean air 

as an oxidant and reformate as fuel. 



Introduction to Fuel Cells – R07-001 

 

   

  58 

 
 
 

6.3.2 Disadvantages 

a. Can tolerate only about 50 ppm of total sulfur compounds  

b. Use a corrosive liquid electrolyte causing material corrosion problems  

c. Heated steam generated by PAFCs is too low in temperature to be used inside big, 

combined heat and power (CHP) systems.  

d. Have a liquid electrolyte, introducing liquid handling problems. The electrolyte slowly 

evaporates over time 

e. Allow product water to enter and dilute the electrolyte  

f. Are big and heavy  

g. Cannot auto-reform hydrocarbon fuels 

h. Must be warmed up before they are operated or be continuously maintained at their 

operating temperature  

6.3.3 Applications  

The operative temperature of the PAFCs is too low to be successfully used inside big stationary 

power generating applications. But these are useful in small, distributed power generation. 
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7 CHAPTER - 7: MOLTEN CARBONATE FUEL CELLS (MCFC)  

In the molten carbonate fuel cell (MCFC), the electrolyte consists of a molten mixture of potassium 

carbonate and lithium carbonate to transport carbonate ions from the cathode to the anode. The 

CO32- transport needs a supply of CO2 at the cathode side of the cell which is generally be obtained 

by recycling the anode offside gas. The operating temperature is about 650°C which allows nickel 

to be used as catalyst material. 

The basic principle of the MCFC is shown in the figure below. 

 

 

Figure 23.Basic Principle of MCFCs 

Ionic salt releases carbonate ions when heated. These flow to the anode and react with hydrogen 

to generate CO2, H2O, and electrons. Oxygen and CO2 recycled from the anode react with electrons 

flowing from the anode through the external circuit, giving back the carbonate ion to the 

electrolyte. 
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The cell requires time to start since it needs to reach a temperature of 650°C. Upon reaching this 

temperature, the carbonate salts begin to melt and become conductive by carbonate ions (CO3 2-). 

These ions are transported from the cathode to the anode where they combine with hydrogen to 

produce water, carbon dioxide, and electrons. These electrons are then collected by the anode and 

routed, through an external circuit, to the cathode thus generating electricity and heat.  

Their high temperature makes them suitable for cogeneration. With the effective use of waste heat, 

their efficiency can be enhanced to 60-70 percent by properly utilizing waste heat. Each cell can 

generate 0.7-1.0 volts DC. 

MCFCs can run on methane, natural gas, or coal reforming gases and has good tolerance for 

impurities in the fuel. MCFCs can convert fuels directly into hydrogen without external reformers. 

In fact, due to the high temperatures, the fuels can be directly converted to hydrogen through a 

process called catalytic internal reforming which take places in a pre-chamber inside the anode 

compartment. The main problem of this configuration is the coarseness of the reforming catalyst, 

which reduces the lifetime of the system. 

7.1.1 Reactions 

Anode reaction:  H2 + CO32- → CO2 + H2O + 2e-  

Cathode reaction:  ½O2 + CO2 + 2e- → CO32- 

Overall reaction:  H2 + ½O2 → H2O 

7.2 Structure of MCFC  

The base construction of an MCFC is a ceramic matrix containing the electrolyte which is 

surrounded by the anode, fueled by hydrogen-rich fuel, and the cathode, fueled by oxygen (usually 

air). 

There are two mixes of molten carbonate salts - a combination of lithium carbonate and potassium 

carbonate or lithium carbonate and sodium carbonate. Those electrolytes are dispersed inside a 

porous and chemically inert ceramic matrix made with lithium aluminate (LiAlO2). Inside this 

structure, ceramic powder and fibers are used to reinforce the total mechanical strength.  
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Because of the high operating temperature, a comparatively cheap catalyst like nickel can be 

utilized instead of the considerably expensive ones like platinum. The anode is a porous electrode 

produced using a nickel alloy (Ni-5Cr, Ni-xAl) as the catalyst. These alloys contain a little amount 

of aluminum or chromium to suppress the hot creep inside the electrode structure. The cathode is 

realized with a porous nickel catalyst.  

7.3 Advantages and Disadvantages  

7.3.1 Advantages 

a. Molten carbonate fuel cells can run on natural gas or coal gasified gasses. This eliminates 

the requirement for on-site hydrogen storage or an external reformer. 

b. Can reach up to 50% efficiency and provide high-quality heat, making them suitable for 

cogeneration. The total heat and power efficiency of MCFC applications is 60–70%. 

c. No noble metal catalyst is required. This reduces the cost of cell-building by using 

conventional materials like stainless steel and nickel-based alloys. 

7.3.2 Disadvantages 

a. Corrosion can dissolve nickel oxide from the cathode into the electrolyte. This can lead to 

electrolyte loss, deterioration of separator plates, probable cell short-circuits, dehydration 

or flooding of electrodes, decreased performance, reduced cell life, and cell failure. Using 

a platinum catalyst solves some of these issues but eliminates the cost-saving benefit. 

b. Susceptible to dimensional instability, which can distort electrodes, reduce active surface 

area, and induce contact loss and excessive component resistance. 

c. Intolerance to sulfur. The anode can only withstand 1-5 ppm sulfur compounds (mostly 

H2S) in the fuel gas without performance degradation. 

d. Use a liquid electrolyte, which introduces liquid handling issues. 

e. Take considerable time to warm up. 

7.3.3 Challenges 

The molten carbonate cells are likely to occupy the same market segment as the SOFCs. The 

primary difference is that MCFCs require CO2 recirculation, implying that it is difficult to design 

a power system below 250kW. This removes the market in domestic scale power. 
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7.3.4 Applications 

Molten carbonate fuel cells operate at higher temperatures and are also designed to be used as a 

baseload, 24/7 power source.  

Because of their high working temperature, MCFC is used in stationary power production and 

CHP applications. They can produce high powers up to 100 MW. 

They are not so expensive in production and hence can be used for commercial uses.    
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8 CHAPTER - 8:  SOLID OXIDE FUEL CELLS (SOFC)  

Solid Oxide Fuel Cells (SOFCs) uses nonporous metal oxide electrolyte that conducts oxide (O2–

) ions from the cathode to the anode. This is unlike most fuel cells, which conduct hydrogen ions 

from the anode to the cathode.  

The electrolyte is a ceramic made of a solid oxide, commonly zirconia (stabilized with other rare 

earth oxides like yttrium). Its all-solid-state ceramic design provides efficiency, stability, and 

dependability. 

Solid oxide fuel cells operate at about 1000ºC and a pressure of 15 psig (1 barg). Each cell produces 

0.8-1.0 VDC. 

The SOFC's high interior temperature is both an asset and a liability. The high temperatures allow 

electrochemical reactions to occur without the usage of noble metal catalysts. Owing to the high 

temperatures, a wide range of hydrogen-containing fuels (coal gas, biogas, propane, natural gas, 

hydrogen) can be used. The drawback is that the high temperatures shorten stack life and increase 

costs. 

SOFCs have a thermal and power efficiency of 60%. Because of the high-quality waste heat, steam 

can be generated and used in a CHP system, enhancing efficiency up to 80%. 

8.1 Solid Oxide Fuel Cells Structure  

SOFCs are classified as oxygen conducting or hydrogen conducting. Since there are no chemically 

stable hydrogen ion electrolytes yet, research has centered on oxygen ion electrolytes. 

The cell's basic construction remains unchanged: the anode and cathode are separated by an 

electrolyte layer. The electrolyte layer is a thin solid ceramic material such as Yttrium doped 

zirconium oxide (YSZ) which has good ionic conductivity, chemical stability, and mechanical 

strength.  

 

The cathode is porous to allow oxygen gas to pass between it and the electrolyte. Due to the high 

temperatures involved, most construction materials are strontium doped LaMnO3.  
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The anode is porous nickel yttrium doped zirconium oxide (Nickel-YSZ). Nickel functions as an 

oxidation catalyst but has issues like high thermal expansion and microstructure coarsening. YSZ 

limits these characteristics and enhances anode-electrolyte interface adhesion. 

The cell works by supplying air to the cathode where the oxygen molecules are split into oxygen 

ions (O2-) with the addition of four electrons. The ions go through the electrolyte to the anode, 

where they recombine with the supplied hydrogen, releasing additional electrons and producing 

hot water. The anode collects the electrons and generates the current. 

 

 

Figure 24.SOFC Structure 

8.2 Design Configurations 

There are two major configurations for the solid oxide fuel cell: tubular and planar. Although the 

tubular configuration is more developed than the planar configuration, there has been increasing 

research being done on the later. 

8.2.1 Tubular  

The tubular SOFC design constructs the cell stack as a bundle of tubular electrode- electrolyte 

assemblies connected in series. The air is introduced to the interiors of the individual tubes while 

the fuel passes through the exteriors of the tubes to produce electricity. The major advantage to 
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this design is that it alleviates the problem of using high-temperature seals. Various studies have 

also shown that the stacks of tubular design have been operated over 100,000 hours and have 

shown little or no cell degradation. However, the long current path from the cell to the interconnect 

limits the performance of the cell. Examples of companies that make this design are Siemens 

Westinghouse Power Corporation and a few Japanese companies such as Mitsubishi Heavy 

Industries. 

 

 

Figure 25.Cross-section of the Tubular Design 

8.2.2 Planar  

The planar (also known as flat plate) design is common for other fuel cell stacks such as PAFCs. 

The flat plates are bonded together in series to form electrode-electrolyte layers, unlike the tubular 

design. The overall stack performance is improved since there is lower ohmic resistance and higher 

power densities. The planar design is easier to manufacture and is about 25% cheaper to make. 

The only disadvantage to this design is that high-temperature seals are necessary. Examples of 

companies that use this concept are Ceramatec, Inc., General Electric, SOFCo, and AlliedSignal. 

The figure below is an illustration of the planar SOFC design. 
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Figure 26.Planar Cell Design 

 

8.3 Advantages and Disadvantages  

8.3.1 Advantages 

a. They are not poisoned by carbon monoxide (CO); they are also sulfur resistant. 

b. The high operating temperatures support effective fuel processing (internal reforming), 

therefore producing high-quality byproduct heat for cogeneration uses and efficiencies up 

to 85%.  

c. They do not require expensive catalysts. 

d. There is less restriction on the cell’s configuration because of its solid-state character. The 

cell can be produced in a variety of self-supporting shapes and configurations. 

e. Due to an all-solid-state ceramic construction, it offers stability and reliability. 

f. They can operate on a range of low-cost hydrocarbon fuels (biogas, coal gas, natural gas). 

g. They operate at higher current densities than molten carbonate fuel cells 

h. Have a solid electrolyte, avoiding problems associated with handling liquids. 

8.3.2 Disadvantages 

a. There are strict restrictions on the raw materials due to the high operating temperature of 

1,000°C. Only a few materials can operate at high temperatures and remain solid. To avoid 

delamination and cracking during heat cycles, the materials must be dense enough to 
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prevent fuel and oxidant gas mixing and have closely matched thermal expansion 

characteristics. SOFC construction requires the development of materials with the 

appropriate conductivity, chemical compatibility with other cell components, dimensional 

stability, durability, and high endurance. 

b. SOFC in general are more tolerant to sulfur compounds than are MCFCs, although overall 

levels must still be limited to 50 ppm. This higher sulfur tolerance makes these fuel cells 

attractive for heavier fuels. Excess sulfur in the fuel affects performance. 

c. Suffer from a considerably long starting time. 

8.3.3 Challenges 

A fundamental problem with SOFC systems is to overcome heat loss. The higher the heat loss the 

more recuperation is necessary to maintain the fuel cell within an acceptable temperature range, 

and hence to assure good performance. 

8.3.4 Applications 

SOFCs operate at high temperatures, making them ideal for applications that require high-

temperature heat. This heat can be used in two ways: to heat industrial or residential operations, or 

to power turbines for additional electricity production. 

This device is also unique in that it can use a variety of fuels. Most of the petroleum products can 

be used as fuel.  
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9 CHAPTER - 9: DIRECT METHANOL FUEL CELLS (DMFCS)  

Direct Methanol Fuel Cells (DMFC) has somewhat the same qualities as that of a PEMFC, 

however, the distinction is that it uses methanol directly as a fuel. It simplifies the fuel storage 

system and eliminates the need to produce hydrogen. 

However, the drawbacks are the lower electrochemical activity of the methanol as compared to 

hydrogen, giving rise to lower cell voltages and, hence, efficiencies. Also, methanol is miscible in 

water, so some of it is liable to cross the water-saturated membrane and cause corrosion and 

exhaust gas problems on the cathode side. 

These cells work between 70°C and 100°C. The efficiency is typically <30 percent and needs a 

significant amount of anode catalyst and therefore highly expensive.  

Individual fuel cells have a maximum output voltage of the order of 1-volt DC. Substantial voltages 

and power outputs are obtained by connecting many cells electrically in series to form a fuel cell 

stack. 

9.1 DMFC Structure  

The core of DMFC comprises an anode, cathode, electrolyte, and catalyst sandwiched between 

two graphite flow field plates. The plates channel the fuel and air to opposite sides of the membrane 

electrode assembly (MEA). The cooling plates convey the coolant past the fuel cells to absorb heat 

and regulate the reaction temperature. Seals between the graphite plates ensure that the oxidant, 

fuel, and coolant streams never mix within the fuel cells. 

Electrical endplates are positioned at the flow field plate ends. These endplates connect to the 

output power terminals from which the output power is extracted. 

Practical fuel cell design relies on generating high-power output per area of the membrane, scaling 

the active membrane area to a workable size, and making the whole stack appropriately compact 

for its intended use. Seals, flow field pattern tolerances, and cell alignment is critical.  

The catalytic layer is composed of a mixture of a catalyst, which is usually a combination of 

platinum (at the cathode) and platinum-ruthenium alloy (at the anode) nanoparticles and an 
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ionomer. The main property of the catalytic layer is its mixed conductivity for both protons and 

electrons. 

The diffusion layer is composed of a mixture of carbon and Teflon with hydrophobic properties 

which allows both the passage of oxygen molecules to the catalyst layer of the cathode and the 

escape of CO2 molecules from the anode.  

The combination of the membrane and the electrodes gives life to the MEA assembly which 

thickness is usually around 1 millimeter.  

 

 

Figure 27.DMFC Structure 

9.1.1 Reactions 

Anode reaction: MeOH + H2O → CO2 + 6H+ + 6e-  

Cathode reaction:  3(½O2) + 6H+ + 6e- → 3H2O 

Overall reaction:  MeOH + H2O+ 3(½O2) → CO2 + 3H2O 
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9.2 Advantages and Disadvantages 

9.2.1 Advantages 

The main advantage of DMFC is the fuel used, which is Methanol. Because methanol is cheap and 

easy to produce fuel, it may be directly pumped into the cell, allowing for a simpler cell structure 

and lighter weight. 

Like PEMFCs, DMFCs are considered green technology since they produce no sulfur or nitrogen 

emissions (only carbon dioxide). 

9.2.2 Disadvantages 

DMFCs have the lowest efficiency of all fuel cells at roughly 30%. 

The power density is low at 200-400 mW/cm2. They can't handle the energy needs of many 

portable applications. 

This technology is still in its infancy, although increasing interest in low-power portable 

applications has considerably increased development efforts. These efforts focus on:   

a. Increasing methanol reactivity by developing novel catalysts. 

b. The use of higher temperatures and improved membranes to avoid methanol cross-over. 

c. The optimization of the electrodes and the MEA assembly.    

9.2.3 Applications 

DMFC is considered a popular technology for portable applications and generators. The two main 

commercial applications are:  

a. Portable power generation 

b. Low weight substitute of the batteries for both civil and military environments.    
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10 CHAPTER - 10:  ALKALINE FUEL CELLS (AFC)  

Alkaline Fuel Cells (AFCs) uses a solution of potassium hydroxide electrolyte that conducts 

hydroxyl (OH–) ions from the cathode to the anode. This is unlike many other types of fuel cells 

that conduct hydrogen ions from the anode to the cathode. 

AFC uses hydrogen as fuel and pure oxygen (NOT AIR) as an oxidant because CO2 in the air 

carbonates the electrolyte (350 ppm). 

10.1 Type of Electrolytes 

The electrolyte can be mobile, static, or dissolved fuel type.  

10.1.1 Mobile Alkaline Electrolyte 

Mobile alkaline electrolyte fuel cells circulate an electrolyte between the electrodes. Since it tends 

to evaporate the water product and consequent dilution of the electrolyte, the water is extracted 

with the help of a condenser. The major challenge is the chemical reaction between the potassium 

hydroxide (KOH) and the carbon dioxide (CO2) that is present in the air. This reaction is 

undesirable because the effectiveness of the fuel cell depends upon the purity of the potassium 

hydroxide solution. To tackle this problem a carbon dioxide scrubber (very expensive) is employed 

to preserve the solution as pure as possible. This type of design is the one that was used inside the 

Apollo space shuttle, where the cost was not a problem.  

10.1.2 Static Alkaline Fuel Cells 

Static Alkaline fuel cells use a thick paste of electrolyte kept together by capillary forces within a 

porous matrix, preventing electrolyte circulation. The paste itself provides gas sealing. Product 

water evaporates into the source hydrogen gas stream at the anode from which it is subsequently 

condensed. A circulating coolant removes the waste heat. This AFC variant requires pure oxygen 

infusion into the cathode. A cooling system keeps the fuel cell within the required operating 

temperature range. 

10.1.3 Dissolved Fuel Type AFC 

Dissolved fuel type AFC is the easiest to realize. Like the others, this design uses potassium 

hydroxide, but the electrolyte is mixed with hydrazine or ammonia. This type of AFC, which is 
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not suitable for large power generators, has issues with the fuel crossover but can be overlooked 

because the catalyst used is not platinum (thus greatly reducing the costs for the substitution of the 

catalyst). The main issue is the type of fuel. The most suitable fuel for this cell is hydrazine (due 

to its capacity to split into hydrogen and nitrogen) which is a toxic, carcinogenic, and explosive 

fuel.  

AFCs operate at about 65 to 220ºC and have a pressure of about 15 psig (1 barg). Each cell can 

produce a voltage between 0.5- and 0.9-volts DC depending on the design with an efficiency up 

to 65%. 

10.2 Alkaline Fuel Cells Structure  

An AFC has a porous anode and a porous cathode, separated by a liquid KOH electrolyte. 

The fuel electrode is made of palladium plus silver, and the fuel is either alcohol or a hydrocarbon 

which is reformed with steam on a nickel catalyst on one side of the electrode. The hydrogen 

formed passes through the electrode and reacts with the electrolyte, but the palladium prevents the 

CO2 to passes through and get into the electrolyte. 

 

 

Figure 28. AFC Structure 

10.2.1 Reactions 

Anode reaction: H2 + 2OH- → 2H2O + 2e-  
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Cathode reaction:  ½O2 + H2O + 2e- → 2OH- 

Overall reaction:  H2 + ½O2 → H2O 

10.3 Advantages and Disadvantages  

10.3.1 Advantages 

The advantages of alkaline fuel cells include: 

a. Low-temperature cells have the advantage of being able to start up easily from cold 

b. Competitive costs due to the simplicity of the materials used in cell structure 

c. High efficiency up to 65% (which is high for cold fuel cells). 

d. Need little or no platinum catalyst 

e. Minimal corrosion 

f. The relative ease of operation 

g. Low mass and volume 

10.3.2 Disadvantages 

Disadvantages include: 

a. The intolerance of this type of cell to carbon dioxide (maximum 350 ppm) is a major 

problem. A small amount of CO2 can significantly reduce cell efficiency because of the 

strong reactivity of OH- ions with carbon and its composites. 

b. The oxidant must be pure oxygen and the fuel must be pure hydrogen. Very expensive 

purification systems are required to guarantee the gases purity thus greatly increasing the 

effective cost of a power generator based on AFCs. 

c. A liquid electrolyte causes complications with liquid handling. 

d. Require complex water management 

e. Have a short lifespan of about 10,000-15,000 hours (however life cycles of 40,000 hours 

are required for a full commercialization of a fuel cell technology). 

AFCs are cheaper and more efficient than PEM fuel cells. The reason which prohibits the AFCs 

to become the dominant fuel cell technology is the CO2 poisoning of the electrolyte and low cycle 

life. 
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10.3.3 Applications 

The AFC has a long history in space programs, primarily because it was the first fuel cell to be 

sufficiently developed. It is still used in the space shuttle in a very expensive guise, producing 

power for the on-board systems by combining the pure hydrogen and oxygen stored in the rocket-

fueling system, and producing water for the astronauts to drink. 
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11 CHAPTER -11:  SUMMARY COMPARISON OF FUEL CELLS 

11.1 Characteristics of Different Fuel Cells 

Fuel Cell Type Common Electrolyte 
Temperature 

Range 

System 

Output 

Electrical 

Efficiency 

Polymer Electrolyte 

Membrane (PEM) 

Solid organic polymer 

poly-perfluorosulfonic 

acid 

50 - 100°C 
 

<1kW – 

250kW 

53 -58% 

(vehicles) 

25-35% 

(stationary) 

Direct Methanol 

(DMFC) 

Solid organic polymer 

poly-perfluorosulfonic 

acid 

60 - 90°C 
 

Up to 1.5kW 20 - 25% 

Alkaline (AFC) 

Aqueous solution of 

potassium hydroxide 

soaked in a matrix 

90 - 100°C 
 

10kW – 

100kW 
60% 

Phosphoric Acid 

(PAFC) 

Liquid phosphoric acid 

soaked in a matrix 
150 - 200°C 

 

50kW – 

1MW 

(250kW 

module 

typical) 

32-38% 

Molten Carbonate 

(MCFC) 

Liquid solution of 

lithium, sodium, and/or 

potassium carbonates 

soaked in a matrix 

600 - 700°C 
 

<1kW – 

1MW 

(250kW 

module 

typical) 

45-47% 
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Solid Oxide (SOFC) 

Solid zirconium oxide 

to which a small 

amount of Yttria is 

added 

650 - 1000°C 
 

5kW – 

3MW 
35-43% 

Table 3. Characteristics of Different Fuel Cells 

Source: US DOE Energy Efficiency and Renewable Energy (EERE), August 2007 

11.1.1 Advantages and Disadvantages  

Fuel Cell Type Advantages Disadvantages 

Polymer Electrolyte 

Membrane (PEM) 

Solid electrolyte reduces 

corrosion & electrolyte 

management problems 

Low temperature 

Quick start-up 

Requires expensive catalysts 

High sensitivity to fuel impurities 

Low temperature waste heat 

Waste heat temperature not 

suitable for combined heat and 

power (CHP) 

Direct Methanol 

(DMFC) 

High energy storage 

No reforming needed 

Easy storage and transport 

Low power output 

Methanol is toxic and flammable 

Alkaline (AFC) 
Cathode reaction faster in alkaline 

electrolyte, higher performance 

Expensive removal of CO2 from 

fuel and air streams required 

(CO2 degrades the electrolyte) 

Phosphoric Acid 

(PAFC) 

Higher overall efficiency with 

CHP 

Increased tolerance to impurities 

in hydrogen 

Requires expensive platinum 

catalysts 

Low current and power 

Large size/weight 
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Molten Carbonate 

(MCFC) 

High efficiency 

Fuel flexibility 

Can use a variety of catalysts 

Suitable for CHP 

High temperature speeds 

corrosion and breakdown of cell 

components 

Complex electrolyte management 

Slow start-up 

Solid Oxide (SOFC) 

High efficiency 

Fuel flexibility 

Can use a variety of catalysts 

Solid electrolyte reduces 

electrolyte management problems 

Suitable for CHP 

Hybrid/GT cycle 

High temperature enhances 

corrosion and breakdown of cell 

components 

Slow start-up 

Brittleness of ceramic electrolyte 

with thermal cycling 

Table 4.Advantages and Disadvantages of Different Fuel Cell Types 

Source: Mostly US DOE Energy Efficiency and Renewable Energy (EERE), August 2007 

11.1.2 Applications 

Fuel Cell Type Applications 

Polymer Electrolyte 

Membrane (PEM) 

Backup power 

Portable power 

Small distributed generation 

Transportation 

Direct Methanol 

(DMFC) 

Consumer goods 

Laptops 

Mobile phones 

Portable power 
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Military devices 

Alkaline (AFC) 
Military Defense 

Space 

Phosphoric Acid 

(PAFC) 
Distributed generation 

Molten Carbonate 

(MCFC) 

Electric utility 

Large distributed generation 

Solid Oxide (SOFC) 

Auxiliary power 

Electric utility 

Large distributed generation 

Table 5.Different Fuel Cells Applications 

Source Mostly US DOE Energy Efficiency and Renewable Energy (EERE), August 2007 

Different types of fuel cell are suitable for different applications according their capacity, 

materials, and operating conditions. Figure below illustrates the compatibility of different fuel cell 

types with different applications. 
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Figure 29.Fuel Cell Types for Different Applications 

11.2 Key Suppliers 

The table below includes a few industry leaders, though it is by no means comprehensive. 

Fuel Cell Type Company Location 

Alkaline Fuel Cells (AFC) International Fuel Cells 

Zevco 

USA 

Belgium/UK 

Polymer Electrolyte 

Membrane Fuel Cells 

(PEMFC) 

 

Advanced Power Sources 

Avista Labs 

Ballard 

DeNora 

Energy Partners 

Fuji Electric 

UK 

USA 

Canada 

Italy 

USA 

Japan 
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H Power 

Mitsubishi Electric 

Plug Power 

Siemens 

Toyota 

Honeywell, American Fuel 

Corporation, Northwest Power 

Systems, DuPont, Johnson Matthey, 

3M and GORE 

USA 

Japan 

USA 

Germany 

Japan 

USA 

Phosphoric Acid Fuel 

Cells (PAFC) 

ONSI 

Toshiba 

USA 

Japan 

Molten Carbonate Fuel 

Cells (MCFC) 

Energy Research Corporation 

MC-Power 

Motoren und Turbinen Union 

Ishikawajima-Harima Heavy 

Industries 

USA 

USA 

Germany 

Japan 

Solid Oxide Fuel Cells 

(SOFC) 

Allied Signal 

Ceramic Fuel Cells 

Mitsubishi Heavy Industries 

Rolls-Royce 

Siemens-Westinghouse 

Sulzer Hexis 

USA 

Australia 

Japan 

UK 

Germany/USA 

Switzerland 

Figure 30.Industry Leaders for Fuel Cells 
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12 CHAPTER - 12:  COST ECONOMICS OF FUEL CELLS  

Cost is a crucial factor for the increased commercialization of fuel cells. The total cost of 

ownership typically includes three components: capital costs of equipment and installation, fuel 

costs, and O&M costs. 

Costs for stationary fuel cell systems vary by type and application. We will compare SOFC and 

PEFC costs to obtain an understanding. 

12.1 Capital Cost 

The main component of a fuel cell's first cost is the production costs, which are highly dependent 

on system configuration, embodiment, and production methods. Manufacturing processes are 

closely tied to the projected production volume, while system configuration and design directly 

impact desired system functioning and performance. 

Installed costs vary depending on plant equipment, location, market conditions, particular site 

needs, and current labor rates. 

12.1.1 Cost of Low-temperature PEMFC 

Stack costs range from $250/kW to $600/kW.  

12.1.2 Cost of High-temperature PEMFC 

Stack costs range from $600/kW to $1100/kW.  

12.1.3 Cost of SOFC System  

Stack costs range from $350-550/kW 

Source: http://lma.berkeley.edu/ 

A typical cost break-up for PEMFC is as below:  

http://lma.berkeley.edu/
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Figure 31.Annual Production 

a. Direct material cost dominates stack cost for all systems at all production volumes. 

b. Solid-oxide fuel cell systems are the lowest stack cost.  

c. Low-temperature PEM fuel cells are a close second.  

d. High-temperature PEM fuel cells trail far behind.  

e. Capital cost is large at low production volumes due to low line utilization. 

f. High-temperature systems tend to be more expensive as they require significant investment 

in the associated “balance of plant (BOP)” but should still be able to be manufactured for 

sale close to 600 dollars per kilowatt, not far from the current price for a gas turbine or gas 

engine. 
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The main difference in SOFC stack cost compared to PEFC cost relates to the simpler system 

configuration of the SOFC system. This is mainly because SOFC stacks do not contain the high-

cost precious metals that PEFCs contain. This is offset in part by the relatively complex 

manufacturing process required for the SOFC electrode/electrolyte plates and by the somewhat 

lower power density in SOFC systems. Low-temperature operation (enabled with electrode-

supported planar configuration) enables the use of low-cost metallic interconnects that can be 

manufactured with conventional metal forming operations. 

The BOP contains all the direct stack support systems, reformer, compressors, pumps, and 

recuperating heat exchangers. Its cost is low in comparison to the PEFC because of the simplicity 

of the reformer. However, the cost of the recuperating heat exchangers partially offsets that. 

12.2 Fuel Costs 

The real cost of the energy supplied by fuel cells depends very much on the cost of the Hydrogen 

it consumes and this, in turn, depends on how the Hydrogen was produced. 

Until recently, steam reformation of natural gas was the cheapest way of producing Hydrogen, but 

production costs have risen with the cost of the fuel. Currently, assuming the cost of natural gas is 

about $10per M Btu (Million Btu) the bulk cost of Hydrogen at the production plant will be about 

$5/Kg. The cost of pressurizing the gas and distributing it to refueling stations will add to this 

amount. 

Generating Hydrogen by electrolysis from wind farm electricity is now the cheapest way of 

producing gas. 

Currently, the retail price of pressurized hydrogen from an unsubsidized supplier is about $100/kg 

plus cylinder rental. 

12.3 Maintenance Costs 

Maintenance costs for fuel cell systems will vary with the type of fuel cell, size, and maturity of 

the equipment. Some of the typical costs that need to be included are: 

a. Maintenance labor. 
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b. Ancillary replacement parts and material such as air and fuel filters, reformer igniter or 

spark plug, water treatment beds, flange gaskets, valves, electronic components, etc., and 

consumables such as sulfur adsorbent bed catalysts and nitrogen for shutdown purging. 

c. Major overhauls include shift catalyst replacement (3 to 5 years), reformer catalyst 

replacement (5 years), and stack replacement (5 to 10 years). 

Maintenance can either be performed by in-house personnel or contracted out to manufacturers, 

distributors, or dealers under service contracts. Details of full maintenance contracts (covering all 

recommended service) and costing are not generally available but are estimated at 0.7 to 2.0 

cents/kWh excluding the stack replacement cost sinking fund. Maintenance for initial commercial 

fuel cells has included remote monitoring of system performance and conditions and an allowance 

for predictive maintenance. Recommended service is comprised of routine short interval 

inspections/adjustments and periodic replacement of filters (projected at intervals of 2,000 to 4,000 

hours). 
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Course Summary 

Fuel cells are coming into widespread commercial use for stationary power and transportation 

applications because of their high efficiency, zero noise pollution and low environmental impact. 

The fuel cells offer following advantages: 

a. Direct energy conversion (no combustion) 

b. No moving parts in the energy converter 

c. Quiet 

d. Demonstrated high availability of lower temperature units 

e. Siting ability 

f. Fuel flexibility 

g. Demonstrated endurance/reliability of lower temperature units 

h. Good performance at off-design load operation 

i. Modular installations to match load and increase reliability 

j. Remote/unattended operation 

k. Size flexibility 

l. Rapid load following capability 

A few drawbacks of fuel cells include: 

a. High costs 

b. Endurance/reliability of higher temperature units not demonstrated 

c. Unfamiliar technology to the power industry 

d. No infrastructure  

The major drawback of fuel cell is the high cost of production and operation ($/kWh). Specific 

areas where cost reductions are being investigated are:  

a. Material reduction and exploration of lower-cost material alternatives  

b. Reducing the complexity of an integrated system  

c. Minimizing temperature constraints (which add complexity and cost to the system)  

d. Streamlining manufacturing processes  
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e. Increasing power density (footprint reduction)  

f. Scaling up production to gain the benefit of economies of scale (volume) through increased 

market penetration.  
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